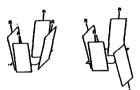
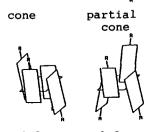

REMARKABLE METAL TEMPLATE EFFECTS ON SELECTIVE SYNTHESES OF p-t-BUTYLCALIX[4]ARENE CONFORMERS


Koji Iwamoto, Kiyoshi Fujimoto, Tsutomu Matsuda, and Seiji Shinkai^{*} Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan


Abstract: It was found that the conformer distribution in tetra-O-substitution of p-t-butylcalix[4]arene is remarkably affected by metal species in base: in particular, 100% "cone" selectivity in the presence of Na_2CO_3 is changed to 100% "partial cone" selectivity in the presence of Cs_2CO_3 in the reaction with ethyl bromoacetate.

Calix[4]arenes favorably adopt a cone conformation because of strong intramolecular hydrogen-bonding interactions, 1^{-3} but introduction of bulky alkyl or acyl groups into the OH groups suppresses the oxygen-through-theannulus rotation and thus results in conformational isomers.4,5 In conformationally immobile calix[4]arenes there exist four different conformers: that is, cone, partial cone, 1,2-alternate, and 1,3-alternate. To the best of our knowledge, however, considerable confusion still exists in the conformer distribution. For example, tetra-O-propylation of p-t-butylcalix[4]arene (1) in the presence of NaH (the most typical method for tetra-O-substitution) affords "cone" and "partial cone" in a 1:1 ratio⁵ whereas tetra-0ethoxycarbonylmethylation under the similar reaction conditions affords only "cone".⁶⁻⁹ The reason for this difference has never been explained. We carefully compared various reaction conditions and finally reached a conclusion that metal cations in base play a crucial role as a template in determining the conformer distribution. In this paper, we report several synthetic methods for new conformational isomers and discuss a possible correlation between the metal template effect and the conformer distribution.

Compound 1 (1.0 g; 1.54 mmol) in 40 ml of solvent was treated with excess RX (50 equiv.) in the presence of appropriate base. The conformer distribution of 2 was estimated by h.p.l.c. analysis. In a separate study

1,2- 1,3alternate alternate

each conformer was isolated by a preparative t.l.c. method and the structures were determined from the split pattern of the $ArCH_2Ar$ protons in ¹H n.m.r. spectroscopy.² Since the n-Pr and EtOCOCH₂ groups are bulky enough to inhibit the oxygen-through-the-annulus rotation,^{5,6} ² is conformationally immobile at room temperature. The results are summarized in Tables 1 and 2.

We used alkali carbonates as base because Li⁺, Na⁺, K⁺, and Cs⁺ salts are commercially-available. The reaction of 1 and n-PrBr in DMF in the presence of Li₂CO₃, Na₂CO₃, or K₂CO₃ did not yield 2a. The reaction product recovered from these systems was di-O-propylated 1 (identified by ¹H n.m.r. and elemental analysis). On the other hand, the reaction of 1 and n-PrBr in the presence of Cs₂CO₃ gave 2a in 100% yield. The yield of cone-2a is slightly higher than that obtained in the presence of NaH. Interestingly, we isolated 1,2-alternate-2a in 9% yield.¹⁰ To the best of our knowledge, this is the first example for the synthesis of a 1,2-alternate conformer by direct O-alkylation of 1.¹⁰

Ba(OH)₂ has been used for the synthesis of tri-O-alkylcalix[4]arenes.⁴ In the reaction of 1 and n-PrBr, we unexpectedly obtained "cone-shaped" tri-O-propyl-p-t-butylcalix[4]arene in the quantitative yield. O-Propylation of "cone-shaped" tri-O-propyl-p-t-butylcalix[4]arene in the presence of NaH gave cone-2a in 100% yield. This is a two-step synthetic method for cone-2a. As shown in Table 1, a trace amount of cone-2a resulted from this reaction system when the reaction was continued for a long period (70 h). This is a onestep synthetic method for cone-2a but not practical because of the low yield.

More remarkable metal template effects were observed for the reaction of 1 with ethyl bromoacetate (Table 2). It is known that the standard method using NaH as base affords only cone-2b.^{1,2,6-9} The "perfect" cone selectivity was also observed for Li_2CO_3 (in DMF) and Na_2CO_3 (in acetone). Surprisingly, partial-cone-2a¹² was isolated from the reaction systems using

Base(equiv. of 1)	Solvent	Temperature / ^o C	Time /h	Yield /%	Conformer of 2a/%		
					Cone	Partial cone	1,2- Alternate
NaH (16)	THF	67	1	100	45	55	0
Li ₂ CO ₃ (40)	DMF	70	78	0	0	0	0
Na_2CO_3 (40)	DMF	70	78	0	0	0	0
K ₂ CO ₃ (40)	DMF	70	78	0	0	0	0
Cs_2CO_3 (40)	DMF	70	3	100	58	34	9
$\begin{cases} Ba(OH)_{2} & 8H_{2}O(3) \\ BaO & (5.8) \end{cases}$	DMF	70	70	6	100	0	0
$ \left\{ \begin{array}{l} Ba(OH)_2 & BH_2O(3) \\ BaO & (5.8) \end{array} \right. $	DMF	30	1	100 ^{b)}	100 ^b) 0	0

Table 1. Reaction of 1 with n-propyl bromide^a)

a) For the reaction conditions see the text. In all runs the 1,3-altenate conformer was not detected.

b) The yield of tri-O-propyl-p-t-butylcalix[4]arene.

Table 2. Reaction of 1 with ethyl bromoacetate^a)

Base(equiv. of 1)		Solvent	Temperature	Time	Yield	Conformer of $\frac{2b}{3}$	
			/°c	/h	/%	Cone	Partial cone
NaH	(16)	THF	67	1	96	100	0
Li ₂ CO3	(20)	DMF	70	45	22	100	0
Na ₂ CO ₃	(20)	DMF	70	6	100	88	12
K ₂ CO ₃	(20)	DMF	70	8	100	84	16
Cs ₂ CO ₃	(20)	DMF	70	3	100	27	73
Li ₂ CO ₃	(20)	Acetone	56	45	0	0	0
Na ₂ CO ₃	(20)	Acetone	56	22	59	100	0
κ ₂ co ₃	(20)	Acetone	56	22	99	96	3
Cs ₂ CO ₃	(20)	Acetone	56	1	100	0	100

a) For the reaction conditions see the text. In all runs the 1,2- and 1,3- alternate conformers were not detected.

carbonate salts with large alkali metal cations. In particular, the reaction in acetone in the presence of Cs_2CO_3 afforded partial-cone-2b in 100% selectivity. This is the first example that a 2b conformer other than cone is synthesized. The findings indicate that the remarkable change in the conformer distribution from 100% cone to 100% partial cone can be attained only by changing the alkili metal cations.

The foregoing results consistently indicate that the metal template effects play a crucial role in the conformer distribution. The four EtOCOCH₂O groups in cone-2b form a closed ionophoric shell and selectively bind Na⁺.⁶⁻⁹ On the other hand, the three EtOCOCH₂O groups in partial-cone-2b form an open ionophoric cavity and Cs⁺ is more selectively bound to partial-cone-2b rather than to cone-2b. The difference in the metal affinity is thus reflected by the conformer distribution. The remarkable cone template effect of Ba(OH)₂ is explained by the strong interaction between Ba²⁺ and two phenoxide anions in di-O-alkylated 1, keeping the four phenol units in a cone conformation.

Thus, this paper demonstrated for the first time the importance of metal template effects on the conformer distribution.

References

- 1. C. D. Gutsche, Prog. Macrocyclic Chem., 1987, 3, 93.
- C. D. Gutsche, "Calixarenes", Royal Society of Chemistry, Cambridge, 1989.
- 3. K. Araki, S. Shinkai, and T. Matsuda, Chem. Lett., 1989, 581.
- C. D. Gutsche, B. Dhawam, J. A. Levine, K. Hyun, and L. J. Baner, <u>Tetrahedron</u>, 1983, 39, 409.
- 5. K. Araki, K. Iwamoto, S. Shinkai, and T. Matsuda, Chem. Lett., 1989, 1747.
- R. Ungaro, A. Pochini, and G. D. Andreetti, <u>J. Inclusion Phenom.</u>, 1984, 2, 199.
- 7. S.-K. Chang and I. Cho, J. Chem. Soc., Perkin Trans. 1, 1986, 211.
- 8. M. A. McKervey, E. M. Seward, G. Ferguson, B. Ruhl, and S. Harris, J. Chem. Soc., Chem. Commun., 1985, 388.
- 9. T. Arimura, M. Kubota, T. Matsuda, O. Manabe, and S. Shinkai, <u>Bull.</u> Chem. Soc. Jpn., 1989, 62, 1674.
- 10. Mp 279-280 ^OC. The ¹H NMR spectrum (CDCl₃, 30 ^OC) for the 1,2-alternate isomer is characterized by one singlet (3.85 ppm) and a pair of doublets (3.10 and 4.17 ppm) for the ArCH₂Ar protons.
- 11. K. Iwamoto, K. Fujimoto, S. Shinkai, to be submitted.

12. Mp 203-205 ^OC. The ¹H NMR spectrum (CDCl₃, 30 ^OC) for the partial cone isomer is characterized by two pairs of doublets (3.13 and 4.50 ppm for one pair and 3.85 and 3.91 ppm for another pair) for the ArCH₂Ar protons. (Received in Japan 8 September 1990)